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limitations of experiments

• Experiments take time and resources.

• Could be uninformative.
• Large space of possible interventions. How do we choose
what to try?
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Can we tell how well an intervention will do
without running it?
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How can we determine what intervention is best?
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• Can use simulated students!

• Fit student model to past data.
• Use student model to simulate an intervention.
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Past Data Intervention
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But what if the student model is inaccurate?
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our approach

Simulate instructional policies on several student models!

Use many models we expect to be wrong, rather than using
one model we hope to be right.
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robust evaluation matrix (rem)

Policy 1 Policy 2 Policy 3
Student Model 1 VSM1,IP1 VSM1,IP2 VSM1,IP3
Student Model 2 VSM2,IP1 VSM2,IP2 VSM2,IP3
Student Model 3 VSM3,IP1 VSM3,IP2 VSM3,IP3
Student Model 4 VSM4,IP1 VSM4,IP2 VSM4,IP3
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case study: fractions tutor
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What goes wrong if we simulate on only a single student
model?
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case study: single model simulation

• Used prior data to fit G-SCOPE Model (Hallak et al., 2015).

• Used G-SCOPE Model to derive new Adaptive Policy.
• Wanted to compare Adaptive Policy to a Baseline Policy
(fixed, spiraling curriculum).

• Simulated both policies on G-SCOPE Model to predict
posttest scores (out of 16 points).
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case study: single model simulation

Baseline Adaptive Policy

Simulated Results 5.9± 0.9 9.1± 0.8

Experimental Results 5.5± 2.6 4.9± 1.8
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single model simulation

• Used by Chi et al. (2011) and Rowe et al. (2014) in
educational settings.

• Rowe et al. (2014): New instructional policy estimated to
be much better than random policy.

• But in experiment, no significant difference found (Rowe
and Lester, 2015).

• If each policy is only simulated on the student model that
was used to derive it, a sub-optimal policy might be
predicted to be better than the optimal policy under the
true student model (Mandel et al., 2014).

• Even with an infinite amount of data!
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case study: robust evaluation matrix

Baseline Adaptive Policy

Awesome Policy

G-SCOPE Model 5.9± 0.9 9.1± 0.8

Bayesian Knowledge Tracing Model 6.5± 0.8 7.0± 1.0
Deep Knowledge Tracing Model 9.9± 1.5 8.6± 2.1
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case study: robust evaluation matrix

Baseline Adaptive Policy Awesome Policy
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Bayesian Knowledge Tracing Model 6.5± 0.8 7.0± 1.0 16
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See paper for another retrospective analysis of prior work
(Rafferty et al., 2015) showing REM can be used:

• to find good policies, robust to the choice of the model
• to spot bad policies that single model simulation could
not catch
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conclusion

• Simulating instructional policies on various student
models can help determine what policy is best (if any) in
advance of running an experiment.

• Showed retrospective analysis of how REM could have
been used to inform experiment.

• Next Step: Close the loop.
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Use many models we expect to be wrong, rather than using
one model we hope to be right.
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importance sampling

• Estimator that gives unbiased and consistent estimates
for a policy!

• Can have very high variance when policy is different from
prior data.

• Example: Worked example or problem-solving?

• 20 sequential decisions ⇒ need over 220 students
• 50 sequential decisions ⇒ need over 250 students!
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